Slope Stability and Landslides

This course will give you a firm grasp of the background necessary to participate in and contribute to the practice, including industry-leading information on standard-of-care for analysis, design, and remediation of unstable slopes, landslides, retention systems, excavations, and embankments. Learn from expert and diverse course faculty.

Upcoming dates coming soon!

Take course number RA00329 when it’s offered next.

What You Will Learn:

Learn how to investigate, analyze, design for, and remediate unstable soil and rock slopes, excavations, earth retention, and embankments. This course also covers:

  • Shear strength and soil/rock properties
  • Slope stability investigation, analysis, program demonstration, and reporting
  • Case histories for landslides, rock falls, embankments, cut slopes, excavations and more

Who Should Attend:

  • Civil and geotechnical engineers
  • Employees with geological surveys and water boards
  • Consultants and investigation/laboratory subcontractors
  • Geological engineers and geoscientists
  • Facility managers and physical plant engineers
  • Earthwork contractors and estimators
  • Architects and landscape architects
  • Utility engineers and managers
  • Local, county, and state transportation commissioners and staff
  • Engineers and contractors for military facilities
  • Lawyers and mediation professionals

Keep Up With This Course

Course Details: RA00329

This is an accordion element with a series of buttons that open and close related content panels.

Course Outline

Day 1 — Soil Stability Analysis Interpretation, and implementation

Introduction, Expectations, and Objectives

  • The 4 G’s of Slope Stability
    • Geology
    • Geometry
    • Geotechnical
    • HydroGeology
  • Slope Failures, Movements, and Processes
    • Features and Geometry of Instability
    • Failure Processes
    • Type and Rate of Movements

Fundamentals of Soil Strength

  • Strength 101
    • Mohr-Coulomb Failure Criterion
    • Effective Stress versus Total Stress
    • State of Stress and Stress Change
  • Laboratory Measurement of Strength
    • Simple Shear Tests
    • Triaxial Testing
    • Direct Shear
  • Typical Soil Properties
  • Selection of Design Shear Strengths
  • In Situ Measurement of Shear Strength

Slope Stability Investigation and Reporting

  • Scoping the field investigation
  • Understanding soil and rock bore logs
  • Interpreting soils reports

Earth Pressures and Stresses

  • Total and effective stresses
  • Distribution of loads to underlying deposits
  • Effects of water table fluctuations
  • Dynamic effects on soil

Importance of Water in Slope Stability Analysis—Groundwater Levels, Seepage Pressures, and Pore Pressures

  • Groundwater Effects on Slope Stability
  • Measuring or estimating soil permeability
  • Seepage forces and buoyancy effects
  • Porewater Pressure
  • The Porewater Pressure Parameter

Group Project/Case Study

DAY 2 — APPLIED SLOPE STABILITY ANALYSIS AND REMEDIATION

Geological Aspects of Slope Stability

  • Jahnsian Steps to Landslide Investigations
    • Recognize
    • Characterize
    • Analyze
    • Stabilize

Fundamentals of Soil Slope Stability Concepts and Analysis with Examples

  • Mechanics of Limit Equilibrium
  • Slope Stability Analysis Methods
  • Selection of the Analysis Method
  • Reinforced slopes
  • Deformation Analysis
  • Finite Element Method (FEM)
  • Example Slope Stability Programs
  • Program Demonstration 

Comprehensive Slope Stability Analysis/Design Reporting

  • Regional and Project Geology
  • Hydrology
  • Seismology
  • Site Description and Work Proposed
  • Project Subsurface Exploration
  • Stability Analyses
    • Method
    • Groundwater Levels and Seepage Conditions
    • Tabulation and Material Property Values for each Load Condition
    • Verification of Results
  • Recommendations and Results

Rock Slope Investigation and Rock Mechanics for Slopes

  • Research and Field Preparation
  • Rock slope investigation
    • Rock type, discontinuity orientation, geometry, water conditions
    • ID rock structures and possible failure modes
    • Methods to estimate shear strength of discontinuities
  • Mapping
  • Rock Mechanics for Slopes
    • Important engineering properties of rock for slopes

DAY 3 — SLOPE REMEDIATION AND EVOLVING PRACTICE

Slope Stabilization Methods

  • Soil Compaction and Improvement
  • Buttressing
  • Drainage
  • Structural systems

Remediation of Rock Slopes

  • Rock slope remediation techniques
    • Rock removal (scaling)
    • Rock reinforcement
    • Protection measures

Rock Slope Case Studies

  • Quarry slope case study
  • Rock toppling case study

Advancing Topics in Slope Stability and Landslides

  • Stability of landfill systems
  • Asset management
  • Risk assessment
  • Remote sensing and instrumentation
  • Rock falls
  • Debris flows
  • Emerging climate risks

Program Director & Instructors

  • William Likos

    Professor & Chair Geological Engineering

    William Likos, PE, is the Gary Wendt Professor and Chair of Civil and Environmental Engineering at the University of Wisconsin-Madison. Dr. Likos’ expertise is in the area of geotechnical engineering, with particular emphasis on unsaturated soil mechanics and expansive clay behavior. Unsaturated soil mechanics is widely considered one of the most important frontiers in geotechnical engineering, with historical applications in slope and excavation stability, foundation engineering, and expansive soil hazards and emerging applications in waste containment, energy, and sustainability. Dr. Likos has established himself as a national leader in this area by publishing one of the first textbooks dedicated to the subject, publishing extensively in the top refereed journals, and serving in leadership roles on national committees. 

  • James Tinjum

    Associate Professor

    James M. Tinjum, PE, PhD, F.ASCE, is an Associate Professor and outgoing Director of the Geological Engineering Program at the University of Wisconsin–Madison. Dr. Tinjum has 35 years of solid waste experience, beginning in 1990. Prior to his engagement as a faculty member at UW–Madison in 2008, he worked for 15 years in industry for prominent engineer-procure-construct firms and a Fortune 50 company. He has specialized technical knowledge in geoenvironmental and remediation engineering for landfills with industrial waste (lime kiln dust, cement kiln dust, foundry residuals, paper mill sludge, coal combustion residuals), municipal solid waste (particularly landfill liner and cover systems and the monitoring, recovery, and value-added use of landfill gases), and hazardous waste. He conducts research in waste geotechnics and waste containment systems; the beneficial reuse of industrial byproducts (e.g., for subgrade improvement and cementitious stabilization of pavement layers); life cycle environmental analysis of geo systems; remediation of contaminated sites; and fate and transport of landfill gas emissions. Dr. Tinjum developed these interests not only through industry practice and applied research, but also through discussions and interactions with practitioners participating in his nationally/internationally attended engineering short course programs. In applied practice, Dr. Tinjum has participated in nearly 100 solid waste projects. 

  • Dale Marcum

    Principal Geologic Engineer, retired

    Dale Marcum, PE, is a Principle Geologic Engineer, Cotton, Shires and Associates, Inc., Los Gatos, California. Dale has a background in both geology and engineering.  He managed to earn a bachelor’s degree in geology at Western State College of Colorado, despite the local skiing and fishing opportunities.  Following graduation, he spent three years working as a geotechnical consultant in the San Francisco Bay Area.  This was soon after the 198282 El Nino storms that caused extensive slope stability problems in Northern California, so many of the projects Mr. Marcum worked on during this time period involved investigating and repairing landslides.  Wanting to learn more about the engineering aspects of landslide remediation, Mr. Marcum returned to academia, and earned a master’s degree in geotechnical engineering at U.C. Berkeley.  At Berkeley, due to his background in geology and studying rocks, Mr. Marcum focused his interests on rock mechanics. 

  • Program Director

    James Tinjum

Total Credits:
CEU 2.2
PDH 22

Course Administration

This is an accordion element with a series of buttons that open and close related content panels.

Payment Options

If you are planning to attend an Interdisciplinary Professional Programs course, payment is required at the time of registration. Below are the payment options:

Pay by Credit Card

Enroll online and pay by credit card.

  • Search for the course on the website and then click on the Enroll Now button from the course webpage.
  • Enter all necessary course attendee information and payment information on the course enrollment page.
  • You will receive an email to confirm successful enrollment and payment.

Enroll over the phone and pay by credit card.

  • Call CERC Registrations at 608-262-2451.
  • Provide the registrations representative with:
    • the course name, dates, and/or course number.
    • the necessary course attendee information and payment information.
  • You will receive either a mailed document or an email to confirm successful enrollment payment.

Pay by Check

Mail in a completed registration form and check payable to UW Madison.

  • Fill out a registration form (found either in the back of the course brochure you received in the mail or here).
  • Prepare a check, made payable to UW Madison.
  • Mail the registration form and check to: CERC Registrations 21 N Park St, Ste 7101 Madison, WI 53715
  • You will receive either a mailed document or an email to confirm successful enrollment and payment.

Pay by Purchase Order

Military

If using SF-182 form, please call our registration number at 608-262-2451 or email interpro@union.wisc.edu for details and instructions.

Event Cancellation

We reserve the right to cancel a course due to insufficient enrollment or unforeseen events. If we cancel a course, participants will be notified via email or phone and will be given the option for a full refund or to transfer their registration and any fees paid to another course. We are not responsible for non-refundable plane tickets, hotel reservations, and other travel related expenses. For enrollee Course Cancellation, refer to notes on course page.

“Very informative and a good refresher...5’s for all instructors.”
—Jeff Richardson, City of Medicine Hat, Alberta

“The course was fantastic! I appreciate all the instructors offering their specialized expertise on each topic.”
—Vicki Voight, Missouri Department of Natural Resources, Missouri Geological Survey

Create a custom learning experience

We can deliver this course as an on-site learning experience tailored to your organization’s specific training needs.