DDC Controls

This course provides a comprehensive, manufacturer-independent understanding of DDC systems, covering everything from control loops and sensor calibration to system architecture and cybersecurity. Participants will explore open protocols like BACnet, learn how to avoid common pitfalls in HVAC control, and gain practical skills in programming, system integration, and commissioning. With a strong focus on real-world applications, this course empowers engineers and facility professionals to make informed decisions and implement robust, future-ready control systems.

Learning Outcomes:

Master direct digital control systems by learning how to:

  • Define system requirements and select appropriate hardware, software, and protocols—including BACnet—for HVAC and building automation.
  • Plan and implement robust DDC architectures with attention to IT integration, cybersecurity, and interoperability.
  • Troubleshoot and optimize control strategies for air handling units, VAV systems, central plants, and other HVAC applications.

Examine the capabilities of DDC systems and learn:

  • The importance of having a planned system architecture.
  • If open protocols add value with respect to your requirements.
  • Control strategies for a variety of HVAC system types.

Who Should Attend:

  • Consulting and design engineers working on HVAC and building automation systems.
  • Facility managers, building owners, and commissioning authorities seeking to optimize system performance.
  • Technicians and contractors responsible for installing, programming, or maintaining DDC systems in commercial or institutional facilities.

Upcoming dates coming soon!

Take course number RA00259 when it’s offered next.

Course Details: RA00259

This is an accordion element with a series of buttons that open and close related content panels.

Course Outline

Download the full agenda in PDF format here

MONDAY (8 AM to 5 PM)

Course Overview

Introduction to DDC Systems

  • Basic elements of control
  • Feedback concepts
  • Loop response
  • Terminology
  • Types of hardware, software, and firmware

Introduction to the Controlled Systems: Part 1, Load Dynamics 

The Nature of the Problem

  • Developing a Simple Control Loop

Input and Output Data Flow

  • AI, DI, and PI
  • Analog to digital conversion
  • Sensor types, applications, accuracy, stability, calibration, and other factors
  • Safeties, limit devices, and power monitoring
  • AO, DO, and PWM
  • Digital to analog conversion
  • Transducers; damper and valve actuators
  • Configuring network data flow
  • Important performance factors

TUESDAY (8 AM to 5 PM)

Inputs and Outputs: The Field Perspective

  • Where We Came From
  • Averaging Sensors, Thermal Lags, Position Effect Proxies
  • Calibration Offset vs. Multi-Point
  • Actuators
  • Code Issues and Terminal Strips

System Architecture

  • Network concepts
  • Generic components
  • Communication concepts
  • Local vs. global information
  • Installation issues

IT Considerations

Open Systems – the Myths and Realities

  • Do you want an open system?
  • Understanding IT vs. DDC
  • Cautions and concerns
  • Different levels of open systems
  • Engineering issues

Cybersecurity 

WEDNESDAY (8 AM to 5 PM)

System Architecture for BACnet

Programming Tools

  • Types of programming
  • Logic diagrams and programming symbols
  • Designing control logic

Controlling Analog Processes 

  • PID Control
  • Open Loop vs. Close Loop Tuning
  • Lags and the Two Thirds Rule

Application Requirements: The System Concept

  • Organizing your information
  • Process by process approach
  • Supervisory logic
  • Working with System Diagrams

Controlling the Mixed Air Section 

  • Strategies and control logic
  • Assessing an Economizer in the Field

THURSDAY (8 AM to 5 PM)

Controlling the Air Handling Unit Section

  • Heating, cooling, humidification, and reheat

Controlling the Fan

Controlling Constant Volume Systems 

Central Plants: Pump Interactions and Affinity Laws

  • Controlling a Condenser Water System

 VAV Systems

  • Terminal Unit Basics
  • Supply and Return Fan Flow
  • Loads and Coil Discharge Temperatures
  • Minimum and Maximum Flow Settings                 

FRIDAY (8 AM to 12 Noon)

Defining, Planning, Procuring DDC Systems

  • Architecture; Types of Hardware
  • Integration and/or Interoperability Concerns
  • Operator Interfaces; Training
  • Acquisition Strategies; Sole-Source vs. Multi-Vendor
  • Open Protocols
  • Key to Success

Specifying Your System

  • System Descriptions
  • Materials; Devices; Hardware & Software
  • System Setup
  • Specifying Commissioning of DDC

DDC System Commissioning 

  • Documentation Review
  • Start-up Checks
  • Functional Performance Tests (FPT)
  • The Five Principles of DDC

Program Director & Instructors

  • Steve Briggs

    Senior Engineer

    Steve has been an Electrical Engineer with Facility Dynamics Engineering for 20 years. He formerly worked at the Construction Engineering Research Laboratory (CERL) campus of the Engineer Research and Development Center (ERDC) in Champaign, IL.

    For the past 15 years, Steve has worked with the Army Corps of Engineers on the development of DoD Unified Facilities Guide Specifications (UFGS) and Unified Facility Criteria (UFC) for Open Building Automation Systems based on BACnet, LonWorks, and the Niagara Framework. In the past, he has also authored similar Lon and BACnet-based guide specifications for Region 9 (West coast) of GSA.

  • J Santos

    President

    Jay Santos, PE, president, Facility Dynamics Engineering, Columbia, Maryland, is a consulting engineer with more than 25 years of experience in HVAC system troubleshooting, modernization, and automation, he has served commercial, institutional, and industrial clients worldwide. He is a highly respected educator, having supported the HVAC continuing education programs of several major universities.

  • David Sellers

    Senior Engineer

    David Sellers, senior engineer, Facility Dynamics Engineering, Portland, Oregon, has more than 30 years of experience with commissioning, design engineering, facilities engineering, mechanical and control system contracting, and project engineering. His work spans a wide array of facilities, ranging from hospitals and semiconductor clean rooms to commercial office buildings and research/pilot projects in the energy efficiency and sustainability arena.

  • Program Director

    Joy Altwies

Total Credits:
CEU 3.6
PDH 36

Course Administration

This is an accordion element with a series of buttons that open and close related content panels.

Payment Options

If you are planning to attend an Interdisciplinary Professional Programs course, payment is required at the time of registration. Below are the payment options:

Pay by Credit Card

Enroll online and pay by credit card.

  • Search for the course on the website and then click on the Enroll Now button from the course webpage.
  • Enter all necessary course attendee information and payment information on the course enrollment page.
  • You will receive an email to confirm successful enrollment and payment.

Enroll over the phone and pay by credit card.

  • Call CERC Registrations at 608-262-2451.
  • Provide the registrations representative with:
    • the course name, dates, and/or course number.
    • the necessary course attendee information and payment information.
  • You will receive either a mailed document or an email to confirm successful enrollment payment.

Pay by Check

Mail in a completed registration form and check payable to UW Madison.

  • Fill out a registration form (found either in the back of the course brochure you received in the mail or here).
  • Prepare a check, made payable to UW Madison.
  • Mail the registration form and check to: CERC Registrations 21 N Park St, Ste 7101 Madison, WI 53715
  • You will receive either a mailed document or an email to confirm successful enrollment and payment.

Pay by Purchase Order

Military

If using SF-182 form, please call our registration number at 608-262-2451 or email interpro@union.wisc.edu for details and instructions.

Event Cancellation

We reserve the right to cancel a course due to insufficient enrollment or unforeseen events. If we cancel a course, participants will be notified via email or phone and will be given the option for a full refund or to transfer their registration and any fees paid to another course. We are not responsible for non-refundable plane tickets, hotel reservations, and other travel related expenses. For enrollee Course Cancellation, refer to notes on course page.

Course Notes

This course will give you a broad range of knowledge to understand the principles and technical concepts used by various manufacturers. This understanding is essential to acquire, implement, and operate a cost-effective system. While various manufacturers are discussed during the course, the course content is not specific to any vendor.

A laptop computer or tablet is required for the course.