X

Permanent Magnet Machine Design Boot Camp Internal PM, Surface PM, and Brushless DC

Print

Upcoming dates coming soon!

Take this course when it’s offered next!

Course Overview

Permanent magnet (PM) electrical machine design is one of the most important skill sets needed to stay competitive in the motors and generators industry. This intensive course covers the design of several types of PM machines, including internal PM, surface PM, and brushless DC machines. You will gain essential information on the various types of PM machines used in traction motors, industrial motors, aerospace motors, appliance motors, and generator designs.

Who Should Attend?

This course will benefit those whose work requires PM machine design knowledge, especially engineers involved in the design, specification, and integration of components and systems.

  • Electrical engineers 
  • Mechanical design engineers 
  • Project engineers, program managers 
  • Technical managers and supervisors 
  • System integrators

Course Outline

Introduction to PM Machine Design

  • Surface PM
  • Internal PM
  • Brushless DC
  • PM assisted

PM Machine Terminology and Important Definitions

PM and PM Machine Modeling

  • Review of Br, Hc, and energy density of magnet types
  • Equivalent circuits for PMs
  • PM machine modeling

PM Machine Power and Torque Equations

  • PM torque and reluctance torque components
  • Equivalent circuits
  • Vector diagrams

Permanent Magnet Fundamentals and Trends

  • Energy density, remnant flux, and coercive force
  • Temperature effect
  • Losses
  • Price trends
  • Pros and cons of each magnet type for machine design

Advances in Magnetic Materials Technology

Sizing Equations for PM machines

  • Electric loading
  • Magnetic loading
  • Shear stress

Surface PM Machines

  • Design and analysis

Brushless DC Machines

  • Design and analysis

Internal PM Machines

  • Design and analysis of interior PM machines
  • Flux weakening and fault-tolerant design of PM machines
  • Distributed vs. concentrated windings in PM machines
  • Computer-based design optimization of PM machines

Thermal Analysis – Cooling and Ventilation Systems

  • Conduction, convection, and radiation
  • FEA, CFD, lumped-parameters equivalent-networks
  • Fan ventilation, liquid cooling

Noise, Vibration, Structural Issues of PM Machines

Manufacturing of PM Machines

  • Laminations, cores, windings, frames, assemblies
  • Material and manufacturing tolerances

Finite Element Analysis of PM Machines

  • Fundamentals
  • Examples

Examples of PM Machines for Traction Drives

  • Tear down examples from Oak Ridge National Lab

Design Considerations for the Realization of PM Motors

PM Machine Design for Loss Minimization Control

PM Machine Design for Self-Sensing Control

PM Assisted Synchronous Machines

  • Design
  • Finite element
  • Optimization

Special Topics

  • Axial flux PM machines
  • PM flux switching machines

Instructors

Ian Brown

Ian P. Brown received the B.S. degree in engineering from Swarthmore College, Swarthmore, PA, in 1999, and the M.S. and Ph.D. degrees in electrical engineering from the University of Wisconsin, Madison, in 2003 and 2009, respectively. Since 2012, he has been with the Illinois Institute of Technology where he is currently an Associate Professor in the Electrical and Computer Engineering Department. Previously he was with the Corporate Technology Center, A. O. Smith Corporation, Milwaukee, WI. His main research interests are high-performance electrical drives and the design of electric machines.

Tim Burress

Tim Burress, Electric Machines Team Leader, Oak Ridge National Laboratory, Oak Ridge, Tennessee. Burress has led developments of motor controls and drives as well as comprehensive dynamometer evaluations for over 10 years. He also leads novel machine design projects for transportation applications.

Michael Harke

Michael received his BS, MS and Ph.D. in Mechanical Engineering from the University of Wisconsin – Madison in 1997, 1999 and 2006, respectively.  His research focused on control theory, electric machines and power electronics.  During his studies, he worked with numerous companies including Whirlpool, Ford Motor Company, Schneider Electric, International Rectifier and Hamilton Sundstrand.

 In 2006, Michael joined Hamilton Sundstrand in the Applied Research Department where he worked on control and power electronics for aerospace applications including motor drives and actuators.  Between 2010 and 2013 he was with Danfoss Power Electronics where he focused on industrial motor control.  He has since returned to Hamilton Sundstrand, now known as Collins Aerospace.  He is also an Adjunct Professor at the University of Rome La Sapienza, teaching coursework on dynamic analysis and control of ac machines.

 Michael is a member of the Institute of Electrical and Electronic Engineers where he serves as the Past Chair of the Industrial Drives Committee and society representative to the Sensors Council AdCom for the Industry Applications Society.  He was the Technical Program co-Chair for the IEEE Energy Conversion Congress and Exposition in 2013 and 2021.  He has published 25 papers in conferences and journals and has numerous patents.

Dan Ionel

Dan M. Ionel, PhD, FIEEE, is currently Chief Engineer for Regal Beloit Corp., and Visiting Professor at the University of Wisconsin in Milwaukee. After completing post-doctoral research in the SPEED Laboratory, University of Glasgow, UK, Dr. Ionel worked in industrial R&D for large corporations in the UK and the US, most recently as Chief Scientist for Vestas. His design experience covers a wide range of electric machines and drives for various applications with power ratings between 0.002 hp and 10,000 hp. Dr. Ionel published more than 100 technical papers, including two winners of Best Paper Awards from the IEEE Industry Applications Society Electric Machines Committee, and holds more than 30 patents. An IEEE Fellow, he is the Chair-Elect of the IEEE Power and Energy Society Electric Motor Sub-committee, Chair of the Milwaukee IEEE Power Electronics Chapter, and Editor-in-Chief of the Electric Power Components and Systems Journal.

Thomas Jahns

Dr. Thomas M. Jahns received his bachelors, masters, and doctoral degrees from MIT, all in electrical engineering.

Dr. Jahns joined the faculty of the University of Wisconsin-Madison in 1998 in the Department of Electrical and Computer Engineering.  He served for 14 years as a Co-Director of the Wisconsin Electric Machines and Power Electronics Consortium (WEMPEC), a world-renowned university/industry consortium in the electrical power engineering field.  Since 2021, he is the Grainger Emeritus Professor of Power Electronics and Electrical Machines.

Prior to coming to UW-Madison, Dr. Jahns worked at GE Corporate Research and Development (now GE Global Research) in Niskayuna, NY, for 15 years, where he pursued new power electronics and motor drive technology in a variety of research and management positions. His current research interests at UW-Madison include integrated motor drives and electrified propulsion for both land vehicles and aircraft.

Dr. Jahns is a Fellow of IEEE.  He received the 2005 IEEE Nikola Tesla Technical Field Award “for pioneering contributions to the design and application of AC permanent magnet machines”.  Dr. Jahns is a Past President of the IEEE Power Electronics Society.  He was elected to the US National Academy of Engineering in 2015 and received the IEEE Medal in Power Engineering in 2022.

Gianmario Pellegrino

Gianmario Pellegrino,Ph.D., is Professor of Electrical Machines and Drives at the Politecnico di Torino, Turin, Italy. He is engaged in several research projects with the industry and one of the authors of the open-source project SyR-e for the design of electric motors. He was a visitor at Aalborg University, Denmark, the University of Nottingham, UK, and the University of Wisconsin-Madison, USA. Dr. Pellegrino has 55+ IEEE journal papers, eight Best Paper Awards, three patents and several patent applications. He is an AE for the IEEE Transactions on IAs, and a IEEE Senior Member. He is a founding member of the Power Electronics Interdepartmental Laboratory of Politecnico di Torino.

Bulent Sarlioglu

Bulent Sarlioglu is a Professor at the University of Wisconsin-Madison and the Technology and Collaboration Director of WEMPEC of the Wisconsin Electric Machines and Power Electronics Consortium. From 2000 to 2011, he was with Honeywell International Inc.'s Aerospace Division, Torrance, CA, USA, most recently as a Staff Systems Engineer.  His expertise includes electrical machines, drives, and power electronics, particularly in electrifying transportation and industrial applications. He is the inventor or co-inventor of 22 U.S. patents and many international patents. In addition, he has more than 300 technical papers that are published in conference proceedings and journals. Dr. Sarlioglu received Honeywell's Outstanding Engineer Award in 2011 for his outstanding contribution to aerospace, the NSF CAREER Award in 2016, and the 4th Grand Nagamori Award from Nagamori Foundation, Japan, in 2018.  Dr. Sarlioglu received the IEEE PES Cyril Veniott Award in 2021. Dr. Sarlioglu became a fellow of the National Academy of Inventors in 2021 and an IEEE Fellow in 2022.

Aaron Williams

Aaron Williams is the Director of Engineering with Arnold Magnetic Technologies. He has 10 years experience in the magnetics and motors industry. He has a BS in Mechanical Engineering from the Rochester Institute of Technology and an MBA from the Simon School of Business at the University of Rochester. He is an active participant in the Motor and Motion Association (SMMA), Wisconsin Electric Machines and Power Electronics Consortium (WEMPEC), and other industry related organizations.

Upcoming dates coming soon!

Take this course when it’s offered next!

Program Director

Erick Oberstar

Contact Us

Create a custom learning experience

We can deliver this course as an on-site learning experience tailored to your organization’s specific training needs.