X

Power Electronics Design Boot Camp Electrical, Thermal, EMI, Reliability, and New Devices

Print

Upcoming dates coming soon!

Take this course when it’s offered next!

Course Overview

You will learn to master critical subjects for effective design of power electronics, like EMI/EMC, thermal, and reliability design and selection. Expert instructors in the field will teach you to analyze and control power electronic design. They will also expose you to new power electronic devices like Silicon Carbide (SiC) and Gallium Nitride (GaN) devices.

Who Should Attend?

This course will benefit persons working in the area of power electronics design, research, and development such as:

  • Electrical engineers 
  • Mechanical engineers 
  • System engineers
  • Program managers
  • Project engineers 
  • Technical leaders
  • System integrators

Participants should already have some basic acquaintance with power electronics fundamentals and will stress intermediate to advanced subjects. You should have a bachelor’s degree in engineering or a related science or the equivalent amount of industrial experience.

Course Outline

Review of Most Commonly Used Power

Electronic Topologies

  • AC-DC, DC-AC, and DC-DC converters
  • Pulse with modulation

Power MOSFET Devices and Applications

  • Device structure: planar, trench, lateral, superjunction
  • FET characteristics – interpreting a datasheet
  • Thermal instability and hot-spotting in power devices (the Spirito effect)
  • Switching characteristics, hard- and soft-switching
  • FET body-diode characteristics, limits, and failure modes
  • Package electrical and thermal characteristics
  • Thermal models and transient thermal impedance
  • Parallel operation of FETs – static and dynamic current sharing
  • Safe Operating Area (SOA) – forward and reverse bias

IGBT Devices and Applications

  • Device structure: PT, NPT, FS, co-pack diode
  • IGBT characteristics – interpreting a datasheet
  • Current handling and short-circuit capability
  • Safe Operating Area (SOA) – forward and reverse bias, avalanche
  • Switching characteristics – hard- and soft-switching
  • IGBT packaging
  • Thermal impedance and models – IGBT and diode
  • Parallel operation of IGBTs – static and dynamic current sharing
  • Short circuit protection in inverters

Gate Drives

  • Parasitic impedance effects in fast-switching circuits
  • How common source inductance affects switching behavior
  • Inductively-limited switching and di/dt limits
  • Using the Kelvin Source connection in gate drive circuits
  • How much gate drive current and power is necessary?

Fundamentals of Capacitors in Power Electronic Circuits

  • The four basic types their application spaces
  • Sizing capacitors for a two-level VSI and a boost converter
  • Techniques for capacitor integration/packaging

PCB Layout Effects

  • Parasitic impedance, common-source inductance
  • Capacitive coupling examples
  • Inductive coupling examples

Wide Bandgap Power Devices (GaN and SiC) and Converters

  • Comparing normally-on and normally-off device characteristics
  • Static and dynamic characteristics and temperature dependencies
  • Out charge Qoss – why a single number doesn’t tell the whole story
  • Reverse conduction: cascade diode characteristics vs. HEMT diode-like behavior
  • Interpreting double-pulse test results – capacitive charge versus true reverse-recovery
  • Voltage ratings: overvoltage, breakdown
  • Safe operating area and short-circuit capability
  • Thermal characteristics, models
  • Packaging considerations and parasitic impedances

Power Electronic Converter Design with SiC and GaN Devices

  • Efficiency calculations
  • Comparison with Si converters

Thermal Engineering Practice for Power Electronics

  • Conduction and switching loss measurements and calculations
  • Thermal impedance matrices and measurement techniques
  • Transient thermal impedance and device thermodynamic models
  • Basic properties of air and liquid heat exchanges

Reliability Engineering for Power Electronics

  • Basic Weibull analysis
  • Wearout mechanisms: cyclical fatigue and Arrhenius
  • Power transistor and capacitor reliability calculations

Insulation and Dielectric Design

  • Creepage and clearance
  • Breakdown of air/gasses
  • Corona and partial discharge
  • Insulation thermal life and testing

Control and Dynamics

  • Forward dynamics and disturbance rejection in power electronics
  • Linear operating point models
  • Power converter dynamics and state space averaging

EMI for Power Electronics

  • EMI requirements, testing, and test setups
  • Analysis of power electronic emissions
  • Mitigation of power electronics emissions

Converter/Inverter PWM Modulators

  • Differential mode characteristics
  • Common mode characteristics

System Issues Excited by AC Drive CM and DM Voltages

  • Motor over-voltages
  • Bearing damage

Effect of High Frequency CM and DM on Application Hardware

  • Sensors
  • Plant equipment/protection
  • Mitigation

Effect of High Frequency CM and DM on Control/Protection Components

  • Drive sensor characteristics
  • Current sensing

Influence of High Frequency on Power Device Switching Dynamics

  • IGBT behavior
  • Performance and mitigation
  • Voltage measurement/observers

Instructors

Thomas Jahns

Dr. Thomas M. Jahns received his bachelors, masters, and doctoral degrees from MIT, all in electrical engineering.

Dr. Jahns joined the faculty of the University of Wisconsin-Madison in 1998 in the Department of Electrical and Computer Engineering.  He served for 14 years as a Co-Director of the Wisconsin Electric Machines and Power Electronics Consortium (WEMPEC), a world-renowned university/industry consortium in the electrical power engineering field.  Since 2021, he is the Grainger Emeritus Professor of Power Electronics and Electrical Machines.

Prior to coming to UW-Madison, Dr. Jahns worked at GE Corporate Research and Development (now GE Global Research) in Niskayuna, NY, for 15 years, where he pursued new power electronics and motor drive technology in a variety of research and management positions. His current research interests at UW-Madison include integrated motor drives and electrified propulsion for both land vehicles and aircraft.

Dr. Jahns is a Fellow of IEEE.  He received the 2005 IEEE Nikola Tesla Technical Field Award “for pioneering contributions to the design and application of AC permanent magnet machines”.  Dr. Jahns is a Past President of the IEEE Power Electronics Society.  He was elected to the US National Academy of Engineering in 2015 and received the IEEE Medal in Power Engineering in 2022.

Eric Persson

Eric Persson is Executive Director of GaN Applications Engineering at Infineon Technologies. He is a semiconductor industry veteran with 15 years at International Rectifier, and a hands-on power electronic design engineer for 20 years before that. He has presented more than 70 seminars, tutorials and short courses on power electronics at various conferences and Universities around the world.

F. Patrick McCluskey

Dr. Patrick McCluskey is a Professor of Mechanical Engineering at the University of Maryland, College Park and the Department’s Design and Systems Reliability Division Leader.  He has over 25 years of research experience in the areas of thermal management, reliability, and packaging of electronic systems for use in extreme temperature environments and power applications.  Dr. McCluskey has published three books and over 150 peer-reviewed technical articles with over 2500 citations. He is an associate editor of the IEEE Transactions on Components, Packaging, and Manufacturing Technology, a member of the board of governors of the IEEE Electronic Packaging Society, a fellow of IMAPS and a member of ASME and AIAA.  

 

Bulent Sarlioglu

Bulent Sarlioglu is a Professor at the University of Wisconsin-Madison and the Technology and Collaboration Director of WEMPEC of the Wisconsin Electric Machines and Power Electronics Consortium. From 2000 to 2011, he was with Honeywell International Inc.'s Aerospace Division, Torrance, CA, USA, most recently as a Staff Systems Engineer.  His expertise includes electrical machines, drives, and power electronics, particularly in electrifying transportation and industrial applications. He is the inventor or co-inventor of 22 U.S. patents and many international patents. In addition, he has more than 300 technical papers that are published in conference proceedings and journals. Dr. Sarlioglu received Honeywell's Outstanding Engineer Award in 2011 for his outstanding contribution to aerospace, the NSF CAREER Award in 2016, and the 4th Grand Nagamori Award from Nagamori Foundation, Japan, in 2018.  Dr. Sarlioglu received the IEEE PES Cyril Veniott Award in 2021. Dr. Sarlioglu became a fellow of the National Academy of Inventors in 2021 and an IEEE Fellow in 2022.

Michael Schutten

Michael Schutten is presently self-employed as an EMC consultant, specializing in using novel technologies to ensure EMI compliance for power converters and inverters, ranging from low power up to several megawatts. He has developed many innovative technologies to diagnose, locate, and resolve EMI problems.

He was previously a Principal Engineer at the General Electric Global Research Center in Niskayuna, New York. While there he developed advanced EMC technologies that enabled compact, EMI compliant power electronic systems. He has developed robust and ultra-low noise power converters for military, industrial, and consumer applications.

His areas of expertise include electromagnetic compatibility, power electronics, RF electronics, nonlinear control theory, and analog electronics. He has taught multiple short courses at universities, government laboratories, and at twelve IEEE EMC and power electronics conferences. Mike has 35 issued patents and multiple journal and conference papers.

Upcoming dates coming soon!

Take this course when it’s offered next!

Program Director

Erick Oberstar

Contact Us