This is an accordion element with a series of buttons that open and close related content panels.
Course Outline
Introduction to AC Machine Design
- Induction, PM, synchronous and switched reluctance
Sizing Laws: the influence of size
Power Sizing Equations
- Electric and magnetic loading
- Shear stress
Winding Types
- Full pitch and fractional windings
- Fractional pitch windings
- Distributed and concentrated windings
- Fractional slot windings
Magnetic Circuits
- Permeance and reluctance
- Multiple circuit paths
- Magnetic circuits with airgaps
Electric and Magnetic Materials
- Permanent magnet types
- Copper and aluminum
- Steel types
- Skin depth
Main Flux Path Calculations Using Magnetic Circuits
- Main magnetic circuit of an induction machine
- Effective gap and Carter''s coefficient
- Effective length
- Reluctance calculations
Leakage Reactance Calculations
- Slot leakage inductance
- Zigzag and differential leakage inductance
- Skew and end turn leakage inductance
Calculation of Machine Losses
- Eddy current and hysteresis losses
- Friction, windage, and copper losses
Testing and Parameter Characterization
Thermal Analysis and Cooling Systems
- Conduction, convection, and radiation
- FEA, CFD, lumped-parameters equivalent-networks
- Fan ventilation, liquid cooling
Manufacturing Topics
- Laminations, cores, windings, frames, assemblies
- Material and manufacturing tolerances
Vibrations and Noise
- Electromagnetic forces; harmonic components
- Mechanism of transmission
- Mitigation measures
Machine Design Examples
"Back of the Envelope" Calculations to Automated Optimal Computer Design
Finite Element Analysis
- Fundamentals
- Examples
Special Topics—How to Design Machines for Self-Sensing
Course Schedule
Registration Date/Time:
4/14/2025 8:0am Central Time
Event Dates/Times:
- 4/14/2025 8:30am - 5:00pm Central Time
- 4/15/2025 8:30am - 5:00pm Central Time
- 4/16/2025 8:30am - 2:30pm Central Time
Additional Information
This online course uses the Canvas and Zoom platforms.
Your registration confirmation will guide students through accessing the Canvas course site.
Students will create and log in to the Canvas course site with a NetID. Course assets such as instructional materials, participation certificates, and course evaluations will be available to all students through the Canvas course site.
The course materials are all digital and only available on the Canvas course website.
Students will access sessions via the Zoom web conferencing platform. The Zoom link will be provided a few days before the course.
Please watch the email address that you provide during registration for release dates and pre-course information.
Program Director & Instructors
-
Program Director
Erick Oberstar
Thomas Jahns
Grainger Professor of Power Electronics And Electric Machines
Dr. Thomas M. Jahns received his bachelors, masters, and doctoral degrees from MIT, all in electrical engineering.
Dr. Jahns joined the faculty of the University of Wisconsin-Madison in 1998 in the Department of Electrical and Computer Engineering. He served for 14 years as a Co-Director of the Wisconsin Electric Machines and Power Electronics Consortium (WEMPEC), a world-renowned university/industry consortium in the electrical power engineering field. Since 2021, he is the Grainger Emeritus Professor of Power Electronics and Electrical Machines.
Prior to coming to UW-Madison, Dr. Jahns worked at GE Corporate Research and Development (now GE Global Research) in Niskayuna, NY, for 15 years, where he pursued new power electronics and motor drive technology in a variety of research and management positions. His current research interests at UW-Madison include integrated motor drives and electrified propulsion for both land vehicles and aircraft.
Dr. Jahns is a Fellow of IEEE. He received the 2005 IEEE Nikola Tesla Technical Field Award “for pioneering contributions to the design and application of AC permanent magnet machines”. Dr. Jahns is a Past President of the IEEE Power Electronics Society. He was elected to the US National Academy of Engineering in 2015 and received the IEEE Medal in Power Engineering in 2022.
Dan Ionel
Professor
Dan M. Ionel, PhD, FIEEE, is currently Chief Engineer for Regal Beloit Corp., and Visiting Professor at the University of Wisconsin in Milwaukee. After completing post-doctoral research in the SPEED Laboratory, University of Glasgow, UK, Dr. Ionel worked in industrial R&D for large corporations in the UK and the US, most recently as Chief Scientist for Vestas. His design experience covers a wide range of electric machines and drives for various applications with power ratings between 0.002 hp and 10,000 hp. Dr. Ionel published more than 100 technical papers, including two winners of Best Paper Awards from the IEEE Industry Applications Society Electric Machines Committee, and holds more than 30 patents. An IEEE Fellow, he is the Chair-Elect of the IEEE Power and Energy Society Electric Motor Sub-committee, Chair of the Milwaukee IEEE Power Electronics Chapter, and Editor-in-Chief of the Electric Power Components and Systems Journal.
Ayman El-Refaie
Ayman M. EL-Refaie received the M.S. and Ph.D. degrees in electrical engineering from the University of Wisconsin– Madison in 2002 and 2005, respectively. Since 2005, he has been with the Electrical Machines and Drives Laboratory, General Electric Global Research Center, NY, USA as a Principal Engineer and Project Leader. He is the author of more than 50 journal, and 85 conference publications with several others pending. He holds 45 issued U.S. patents with several others pending. His research interests include electrical machines and drives. Since January 2017 he became the Thomas and Suzanne Werner Endowed Chair in Secure and Sustainable Energy at Marquette University. He is a Fellow of the IEEE
James Swanke
Senior Motor Design Engineer
James Swanke is an electrical machine designer with an extensive academic and professional background in electrical engineering. Graduating from the University of Wisconsin-Madison with a B.S. in 2014, a M.S. in 2019, and a PhD in 2023, James has developed a deep expertise in high-performance electrical machines. Prior to pursuing advanced degrees, he gained valuable experience working for Siemens specializing in the electromagnetic design of induction machines. During graduate studies, his research focused on the advancement of high-power density and fault-tolerant electrical machines for aerospace propulsion applications. Currently, James applies this extensive knowledge at H3X Technologies, where he continues to work on the development of cutting-edge permanent magnet machines.
Ian Brown
Associate Professor, Electrical and Computer Engineering
Ian P. Brown received the B.S. degree in engineering from Swarthmore College, Swarthmore, PA, in 1999, and the M.S. and Ph.D. degrees in electrical engineering from the University of Wisconsin, Madison, in 2003 and 2009, respectively. Since 2012, he has been with the Illinois Institute of Technology where he is currently an Associate Professor in the Electrical and Computer Engineering Department. Previously he was with the Corporate Technology Center, A. O. Smith Corporation, Milwaukee, WI. His main research interests are high-performance electrical drives and the design of electric machines.